ProcEngine: An Open Source Procedural Map
Generation Engine

Ahmed Khalifa
PhD Student at NYU

Indiegame Developer and Designer

Every time I start thinking about designing a roguelike or a game that use
procedural generation for maps, I start googling to see what are the different
techniques generation techniques. After selecting the best one, I start writing
a code for it from scratch or copying it. This process is tiring and cumbersome
especially during prototyping phase. In prototyping, I need just to test the
idea as quickly as possible. The main problem when one of these ideas depend
on procedural generated maps. After creating couple of roguelike prototypes, 1
couldn’t take it anymore. I decided to write my own library that I can use it in
prototyping. I called this library ProcEngine.

ProcEngine is an open source procedural map generation engine that allow
the user to select from bunch of different generating algorithms and tune them.
ProcEngine is inspired by Nicky Case (Simulating the world (in Emoji)) and
Kate Compton (tracy.js). The current version of ProcEngine (v1.1.0) supports
the following features:

e Different techniques to divide the map into rooms. Only two techniques
are implemented: equal division and tree division. Equal division divides
the map into a grid then selects room from this grid, while tree division
divide the whole map along the longest dimension till reach the required
number of rooms.

e Define different tiles and define their maximum count.

e Define different neighborhoods in form of 2D matrix of 1’s and 0’s. 1’s are
the places to check while 0’s otherwise.

e Define any number of cellular automata that the system will apply after
each other.

e Specify where to apply the cellular automata. The system support two
positions either applied on the whole map regarding of the room structures
(useful for smoothing the whole map or generating game objects) or on
the generated rooms (useful for designing dungeons).

e Connect/delete the generated islands after applying each cellular automata.
e Cellular automata rules can have multiple conditions and replacing values.

The engine allows the users to modify the underling generator through the
following functions:

e procengine.initialize(data): to initialize the system with your rules.

e procengine.generateMap(): to generate a level (you have to call ini-
tialize beforehand).

e procengine.toString(): to get a string that shows the current data saved
in the system.

e procengine.testing.isDebug: set to true to allow console printing after
each step in the system.

In order to use the system you need to call procengine.initialize(data) func-
tion first then you can call procengine.generateMap() for as many as you want.
Each time you get a new generated map. For more details about how to use the
engine refer to github (https://github.com/amidos2006/procengine).

Here is a bunch of examples that shows the capabilities of the system. The
first example is a very simple generator. The generator should generate a map
of 36x24 with 10 rooms using equal division technique.

var data={
"mapData": ["36x24", "solid:empty"],
"roomData": ["equal:4x4:10", "empty:1"],
"names": ["empty:-1", "solid:-1"],
"neighbourhoods":{"plus": "010,101,010"},
"generationRules": [
{"genData": ["0", "map:-1", "connect:plus:1"], "rules":[]}
]
};

Here are four different generated maps from the previous data, where white is
empty and black is solid:

The second example is more complicated where it generates a map of 36x24
with 5 rooms using tree division technique. Also, it uses three cellular automatas
in the following order:

1. Generate the solid structure of the rooms.
2. Connect the rooms together all over the whole map.
3. Adds objects (1 player, 10 gold pieces (at most), and 15 enemies (at most)).

var data={
"mapData": ["36x24","solid:empty"],
"roomData": ["tree:8x8:5","empty:2|solid:1"],
"names": ["empty:-1","solid:-1","player:1","gold:10","enemy:15"],
"neighbourhoods" : {
"plus": "010,101,010",
"all": "111,111,111"
},
"generationRules": [
{"genData":["3","room:-1","connect:plus:1"],
"rules":["empty,all,or,solid>5","solid:4|empty:1"]13},
{"genData": ["1","map:-1","connect:plus:1"],
"rules":[13},
{"genData": ["1","room:-1","connect:plus:1"],
"rules": ["empty,plus,or,empty>2","player:1|empty:8|gold:2|enemy:2"]1}
]
};

Here are four different maps generated from the previous data, where black is
solid, white is empty, blue is player, red is enemy, yellow is gold:

